Deflation Methods for Sparse PCA

نویسنده

  • Lester W. Mackey
چکیده

In analogy to the PCA setting, the sparse PCA problem is often solved by iteratively alternating between two subtasks: cardinality-constrained rank-one variance maximization and matrix deflation. While the former has received a great deal of attention in the literature, the latter is seldom analyzed and is typically borrowed without justification from the PCA context. In this work, we demonstrate that the standard PCA deflation procedure is seldom appropriate for the sparse PCA setting. To rectify the situation, we first develop several deflation alternatives better suited to the cardinality-constrained context. We then reformulate the sparse PCA optimization problem to explicitly reflect the maximum additional variance objective on each round. The result is a generalized deflation procedure that typically outperforms more standard techniques on real-world datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Factorization and Matrix Concentration

Matrix Factorization and Matrix Concentration by Lester Wayne Mackey II Doctor of Philosophy in Electrical Engineering and Computer Sciences with the Designated Emphasis in Communication, Computation, and Statistics University of California, Berkeley Professor Michael I. Jordan, Chair Motivated by the constrained factorization problems of sparse principal components analysis (PCA) for gene expr...

متن کامل

An algorithm for sparse PCA based on a new sparsity control criterion

Sparse principal component analysis (PCA) imposes extra constraints or penalty terms to the standard PCA to achieve sparsity. In this paper, we first introduce an efficient algorithm for finding a single sparse principal component (PC) with a specified cardinality. Experiments on synthetic data, randomly generated data and real-world data sets show that our algorithm is very fast, especially on...

متن کامل

A Fast Algorithm for Sparse PCA and a New Sparsity Control Criteria

Sparse principal component analysis (PCA) imposes extra constraints or penalty terms to the standard PCA to achieve sparsity. In this paper, we first introduce an efficient algorithm for finding a single sparse principal component (PC) with a specified cardinality. Experiments on synthetic data, randomly generated data and real-world datasets show that our algorithm is very fast, especially on ...

متن کامل

A Deflation Method for Structured Probabilistic PCA

Modern treatments of structured Principal Component Analysis often focus on the estimation of a single component under various assumptions or priors, such as sparsity and smoothness, and then the procedure is extended to multiple components by sequential estimation interleaved with deflation. While prior work has highlighted the importance of proper deflation for ensuring the quality of the est...

متن کامل

Sparse PCA by iterative elimination algorithm

In this paper we proposed an iterative elimination algorithm for sparse principal component analysis. It recursively eliminates variables according to certain criterion that aims to minimize the loss of explained variance, and reconsiders the sparse principal component analysis problem until the desired sparsity is achieved. Two criteria, the approximated minimal variance loss (AMVL) criterion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008